Search results for "Explicit and implicit methods"
showing 3 items of 3 documents
Explicit polynomial solutions of fourth order linear elliptic Partial Differential Equations for boundary based smooth surface generation
2011
We present an explicit polynomial solution method for surface generation. In this case the surface in question is characterized by some boundary configuration whereby the resulting surface conforms to a fourth order linear elliptic Partial Differential Equation, the Euler–Lagrange equation of a quadratic functional defined by a norm. In particular, the paper deals with surfaces generated as explicit Bézier polynomial solutions for the chosen Partial Differential Equation. To present the explicit solution methodologies adopted here we divide the Partial Differential Equations into two groups namely the orthogonal and the non-orthogonal cases. In order to demonstrate our methodology we discus…
Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD
2016
The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative …
DEGENERATE MATRIX METHOD FOR SOLVING NONLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
1998
Degenerate matrix method for numerical solving nonlinear systems of ordinary differential equations is considered. The method is based on an application of special degenerate matrix and usual iteration procedure. The method, which is connected with an implicit Runge‐Kutta method, can be simply realized on computers. An estimation for the error of the method is given. First Published Online: 14 Oct 2010